Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Intervalo de año de publicación
1.
Chem Asian J ; : e202400161, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500400

RESUMEN

Harnessing low-density solar energy and converting it into high-density chemical energy through photocatalysis has emerged as a promising avenue for the production of chemicals and remediation of environmental pollution, which contributes to alleviating the overreliance on fossil fuels. In recent years, metal-organic frameworks (MOFs) have gained widespread application in the field of photocatalysis due to their photostability, tunable structures, and responsiveness in the visible light range. However, most MOFs exhibit relatively low response to light, limiting their practical applications. MOFs-derived nanomaterials not only retain the inherent advantages of pristine MOFs but also show enhanced light adsorption and responsiveness. This review categorizes and summarizes MOFs-derived nanomaterials, including nanocarbons and nanometal oxides, providing representative examples for the synthetic strategies of each category. Subsequently, the recent research progress on MOFs-derived materials in photocatalytic applications are systematically introduced, specifically in the areas of photocatalytic water splitting to H2, photocatalytic CO2 reduction, and photocatalytic water treatment. The corresponding mechanisms involved in each photocatalytic reaction are elaborated in detail. Finally, the review discusses the challenges and further directions faced by MOFs-derived nanomaterials in the field of photocatalysis, highlighting their potential role in advancing sustainable energy production and environmental remediation.

2.
Dalton Trans ; 53(14): 6215-6223, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38483279

RESUMEN

The synthesis of cyclic carbonates through cycloaddition reactions between epoxides and carbon dioxide (CO2) is an important industrial process. Metal-Organic Frameworks (MOFs) have functional and ordered pore structures, making them attractive catalysts for converting gas molecules into valuable products. One approach to enhance the catalytic activity of MOFs in CO2 cycloaddition reactions is to create open metal sites within MOFs. In this study, the amino-functionalized rare earth Gd-MOF (Gd-TPTC-NH2) and its ionic liquid composite catalysts (Gd-TPTC-NH-[BMIM]Br) were synthesized using 2'-amino-[1,1':4',1''-terphenyl]-3,3'',5,5''-tetracarboxylic acid (H4TPTC-NH2) as the ligand. The catalytic performance of these two catalysts was observed in the cycloaddition reaction of CO2 and epoxides. Under the optimized reaction conditions, Gd-TPTC-NH-[BMIM]Br can effectively catalyze the cycloaddition reaction of a variety of epoxide substrates with good to excellent yields of cyclic carbonate products. Comparatively, epichlorohydrin and epibromohydrin, which possess halogen substituents, promote higher yields of cyclic carbonates due to the electron-withdrawing nature of Cl and Br substituents. Additionally, the Gd-TPTC-NH-[BMIM]Br catalyst demonstrated good recyclability and reproducibility, maintaining its catalytic activity without any changes in its structure or properties after five reuse cycles.

3.
Chemistry ; 30(17): e202303918, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38102982

RESUMEN

The photoluminescent properties of lanthanide complexes have been thoroughly investigated; however, there have been much fewer studies showcasing their potential use in ionizing radiation detection. In this work, we delve into the photo- and radio-induced luminescence of a series of lanthanide-bearing organic-inorganic hybrids and their potential as a platform for X-ray scintillation and imaging. The judicious synergy between lanthanide cations and 2,6-di(1H-pyrazol-1-yl)isonicotinate (bppCOO-) ligands affords six new materials with three distinct structures. Notably, Eu-bppCOO-1 and Tb-bppCOO-2 display sharp fingerprint X-ray-excited luminescence (XEL), the intensities of which can be linearly correlated with the X-ray dose rates over a broad dynamic range (0.007-4.55 mGy s-1). Moreover, the X-ray sensing efficacies of Eu-bppCOO-1 and Tb-bppCOO-2 were evaluated, showing that Tb-bppCOO-2 features a lower detection limit of 4.06 µGy s-1 compared to 14.55 µGy s-1 of Eu-bppCOO-1. Given the higher X-ray sensitivity and excellent radiation stability of Tb-bppCOO-2, we fabricated a flexible scintillator film for X-ray imaging by embedding finely ground Tb-bppCOO-2 in the polydimethylsiloxane (PDMS) polymer. The resulting scintillator film can be utilized for high-resolution X-ray imaging with a spatial resolution of approximately 7 lp mm-1.

4.
Inorg Chem ; 62(51): 21396-21408, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38060836

RESUMEN

The construction of efficient photocatalysts for water splitting to enable H2 evolution is pivotal to alleviate energy issues and environmental concerns. In this work, carbon dots (CDs) were prepared by employing "green solvent" ionic liquids as carbon sources and then combined with Pt/NH2-MIL-125, resulting in the emergence of a high-efficiency photocatalyst termed CDs-Pt/NH2-MIL-125 for the first time. This composite photocatalyst exhibited outstanding photocatalytic activity in H2 production under visible light irradiation. Notably, the H2 production rate of CDs100-Pt/NH2-MIL-125 reaches up to 951.4 µmol/g/h, which was 3.1 times that of Pt/NH2-MIL-125. The characterization results indicate that CDs and Pt uniformly dispersed on the surface of NH2-MIL-125 and fabricated a synergistic compact structure, providing a high BET surface area (985 m2 g-1) and a suitable band gap. Furthermore, the distinctive embeddable-dispersed CDs and Pt, as dual cocatalyst, can harvest light and facilitate the transfer of photogenerated electrons, thereby significantly augmenting the exploitation of visible light. The plausible mechanism of photocatalytic H2 evolution over the CDs-Pt/NH2-MIL-125 catalyst was also discussed. This work introduces a promising strategy for designing high-performance CDs-MOFs-based photocatalysts, an innovative step toward achieving efficient photocatalytic water splitting for H2 production.

5.
Inorg Chem ; 62(43): 17678-17690, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37856236

RESUMEN

Regulating the chemical/thermal stability and catalytic activity of coordination polymers (CPs) to achieve high catalytic performance is topical and challenging. The CPs are competent in promoting oxidative cross-coupling, yet they have not received substantial attention. Here, the ligand effect of the secondary ligand of CPs for oxidative cross-coupling reactions was investigated. Specifically, four new isostructural CPs [Co(Fbtx)1.5(4-R-1,2-BDC)]n (denoted as Co-CP-R, Fbtx = 1,4-bis(1,2,4-triazole-1-ylmethyl)-2,3,5,6-tetrafluorobenzene, 4-R-1,2-BDC = 4-R-1,2-benzenedicarboxylate, R = F, Cl, Br, CF3) were prepared. It was found that in the reactions of oxidative amination of benzoxazoles with secondary amines and the oxidative coupling of styrenes with benzaldehydes, both the chemical and thermal stabilities of the four Co-CPs with the R group followed the trend of -CF3 > -Br > -Cl > -F. Density functional theory (DFT) calculations suggested that the difference in reactivity may be ascribed to the effect of substituent groups on the electron transition energy of the cobalt(II) center of these Co-CPs. These findings highlight the secondary ligand effect in regulating the stability and catalytic performance of coordination networks.

6.
Inorg Chem ; 62(21): 8158-8165, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37186814

RESUMEN

Actinide-bearing metal-organic frameworks (MOFs) encompass intriguing structures and properties, but the radioactivity of actinide cripples their applications. Herein, we have constructed a new thorium-based MOF (Th-BDAT) as a bifunctional platform for the adsorption and detection of radioiodine, a more radioactive fission product that can readily spread through the atmosphere in its molecular form or via solution as anionic species. The iodine capture within the framework of Th-BDAT from both the vapor phase and the cyclohexane solution has been verified, showing that Th-BDAT features maximum I2 adsorption capacities (Qmax) of 959 and 1046 mg/g, respectively. Notably, the Qmax of Th-BDAT toward I2 from cyclohexane solution ranks among the highest value for Th-MOFs reported to date. Furthermore, incorporating highly extended and π-electron-rich BDAT4- ligands renders Th-BDAT as a luminescent chemosensor whose emission can be selectively quenched by iodate with a detection limit of 1.367 µM. Our findings thus foreshadow promising directions that might unlock the full potential of actinide-based MOFs from the point of view of practical application.

7.
Chem Commun (Camb) ; 59(33): 4958-4961, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37014679

RESUMEN

Post-synthetic linker installation in a single-crystal-to-single-crystal manner was crystallographically demonstrated in thorium-based metal-organic frameworks (Th-MOFs), not only leading to the discovery of an extremely rare framework de-interpenetration, but also representing an unprecedented strategy for boosting iodine adsorption capacity.

8.
RSC Adv ; 13(8): 4890-4897, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36762090

RESUMEN

ZnO/TiO2 catalysts with different ZnO contents have been prepared through equal volume impregnation method, characterized by XRD, SEM, Py-IR, ICP, XPS, NH3-TPD and N2 adsorption/desorption, and evaluated in the synthesis of polycarbonate diol (PCDL) through transesterification. The results showed that titanium zinc oxide formed in these catalysts, and the content of acidic sites varied with the ZnO content, and ZnO/TiO2 (10%) has the highest acid amount. The ZnO/TiO2 (20%) with medium acidic sites showed the highest catalytic activity. The synthesis process of polycarbonate glycol was also optimized. Under the optimal reaction conditions, the yield of PCDL was 72.5%, and the M n reached 4829 g mol-1 with a PDI of 1.6.

9.
Talanta ; 252: 123894, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36067698

RESUMEN

Sensitization of Cr(VI) oxyanions in environmentally or industrially relevant aquatic media is highly desired owning to their biological toxicity and essential role in nuclear fuel cycle. However, many chemosensors of CrO42- and Cr2O72- suffer from critical drawbacks, including insufficient sensitivity, selectivity, and/or hydrolytic stability. In this work, we prepared a hydrolytically stable metal-organic framework, namely Hf-BITD, which can retain its crystallinity and structural integrity in solutions over a wide pH range (0-12) and in 3 M HCl. The strong emission via rigidifying fluorescent linkers allows for sensing of CrO42- and Cr2O72- in a luminescence quenching manner, with excellent linear correlations (I0/I = 1+ Ksv [Q]) in the ranges of 0-80 µM and 0-50 µM for CrO42- and Cr2O72-, respectively. The adsorption of Cr(VI) oxyanions and the concomitant resonance energy transfer between framework and analysts efficiently turn the emission of Hf-BITD off, which allows for selective recognition of CrO42- and Cr2O72- with detection limits of 0.38 nM and 0.33 nM, respectively. Furthermore, fabrication of Hf-BITD incorporating PVDF membrane makes Hf-BITD@PVDF a promising candidate for facile and effective sensitization of Cr(VI) oxyanions.


Asunto(s)
Cromo , Luminiscencia , Cromo/química , Adsorción
10.
Chem Commun (Camb) ; 58(67): 9389-9392, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35904873

RESUMEN

Synergistic assembly of uranyl centres and luminescent 2,6-bis(pyrazol-1-yl)pyridine-4-carboxylates (bppCOOH) gives rise to a uranyl coordination polymer, namely U-bppCOO, which exhibits a luminescence quenching response toward UV or X-ray irradiation doses. Notably, the photosensitivity of U-bppCOO has been significantly enhanced via metal-ligand assembly compared with that of the naked bppCOOH ligand.

11.
Inorg Chem ; 60(24): 18629-18633, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34851629

RESUMEN

A brand-new application of thorium-bearing clusters in the field of ionizing radiation detection is exemplified by two novel hexanuclear thorium clusters, Th-bppCOO-1 and Th-bppCOO-2, which incorporate carboxylate-functionalized 2,6-di(pyrazol-1-yl)pyridine ligands. Notably, Th-bppCOO-1 is composed of an unprecedented [Th6(OH)4O4(H2O)5]12+ secondary building unit, the Th6 core of which is decorated by five H2O molecules. Furthermore, selective photoluminescence quenching responses of Th-bppCOO-1 and Th-bppCOO-2 toward X-ray over UV radiation have been demonstrated for the first time.

12.
Chemistry ; 27(70): 17586-17594, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34734437

RESUMEN

Polymorphism control of metal-organic frameworks is highly desired for elucidating structure-property relationships, but remains an empirical process and is usually done in a trial-and-error approach. We adopted the rarely used actinide cation Th4+ and a ditopic linker to construct a series of thorium-organic frameworks (TOFs) with a range of polymorphs. The extraordinary coordination versatility of Th4+ cations and clusters, coupled with synthetic modulation, gives five distinct phases, wherein the highest degree of interpenetration (threefold) and porosity (75.9 %) of TOFs have been achieved. Notably, the O atom on the capping site of the nine-coordinated Th4+ cation can function as a bridging unit to interconnect neighboring secondary building units (SBUs), affording topologies that are undocumented for other tetravalent-metal-containing MOFs. Furthermore, for the first time HCOOH has been demonstrated as a bridging unit of SBUs to further induce structural complexity. The resulting TOFs exhibit considerably different adsorption behaviors toward organic dyes, thus suggesting that TOFs represent an exceptional and promising platform for structure-property relationship study.

13.
Dalton Trans ; 50(40): 14325-14331, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34558579

RESUMEN

Expanding the family of lanthanide terpyridine coordination polymers has yielded eighteen new complexes with two different phases, Ln(TPC)2(HCOO)(H2O) (Ln-1) and Ln(TPC)(HCOO)2 (Ln-2) (Ln = Sm-Lu, except Tm). Both structures are composed of lanthanide cations interconnected by 2,2':6',2''-terpyridine-4'-carboxylate ligands to yield one-dimensional chain topologies. However, the incorporation of an additional crystallographically unique decorative TPC ligand into Ln-1 gives rises to a distinct phase. The encapsulation of both metal- and ligand-based phosphors within single coordination polymers leads to dual-emission of the afforded materials. Furthermore, judicious lanthanide doping in heterometallic Ln-1 and Ln-2 allows for fine-tuning the photoluminescent colours over a wide range of gamut. Such a combination showcases the capability to fine-tune the emission colours from deep green, to red, and to blue. In addition, direct white-light emission upon UV excitation can be achieved in the SmxGd1-x-1 system.

14.
Inorg Chem ; 60(8): 5617-5626, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33739815

RESUMEN

The rational design and synthesis of metal-organic frameworks with well-controlled interpenetration have been active research areas of inquiry, particularly for porosity-related applications. Herein, we extend the use of the ligand steric modulation strategy to initiate the first study of the interpenetration control of thorium-based MOFs. The approximate "hardness" of the Th4+ cation, which was conjugated with aromatic substitutions and delicately modified synthetic conditions, allows for the crystallization of single crystals of seven new Th-MOFs with five distinct topologies. Solvothermal reactions of Th(NO3)4 with the triphenyl H2TPDC ligand under variable conditions exclusively gave rise to an interpenetrated Th-MOF with a hex topology, namely Th-SINAP-16. Modifications of the ligand sterics with two pendant methyl groups to 2',5'-Me2TPDC2- and 2,2″-Me2TPDC2- afforded two noninterpenetrated UiO-68-type Th-MOFs (Th-SINAP-17 and Th-SINAP-20, respectively) with record-high pore volumes (74.8% and 75.3%, respectively) among all the thorium MOFs. Moreover, another four Th-MOFs Th-SINAP-n (n = 18, 19, 21, and 22) with three different topologies were obtained by a simple synthetic modulation. Notably, Th-SINAP-16 and Th-SINAP-21 represent the second rare examples of interpenetrated Th-MOFs reported to date. These findings revealed the unprecedented structural complexity and synthetic accessibility of Th-MOFs among all tetravalent metal containing MOFs. Such features make Th-MOFs as an ideal platform to elucidate the structure-property relationship for various applications, e.g. iodine adsorption.

15.
Chem Sci ; 12(48): 15833-15842, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35024107

RESUMEN

Single-crystal-to-single-crystal transformation of metal-organic frameworks has been met with great interest, as it allows for the creation of new materials in a stepwise manner and direct visualization of structural transitions when subjected to external stimuli. However, it remains a peculiarity among numerous metal-organic frameworks, particularly for the ones constructed from tetravalent metal cations. Herein, we present a cationic thorium-organic framework displaying unprecedented triple single-crystal-to-single-crystal transformations in organic solvents, water, and NaIO3 solution. Notably, both the interpenetration conversion and topological change driven by the SC-SC transformation have remained elusive for thorium-organic frameworks. Moreover, the single-crystal-to-single-crystal transition in NaIO3 solution can efficiently and selectively turn the ligand-based emission off, leading to the lowest limit of detection (0.107 µg kg-1) of iodate, one of the primary species of long-lived fission product 129I in aqueous medium, among all luminescent sensors.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119152, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33214103

RESUMEN

High-level ab initio computations have been performed to investigate molecular structures, potential energy curves, vibrational energy levels and spectroscopic constants for twelve Λ-S states of the first four dissociation limits of MgBi. Characterizations of seven Ω states, corresponding to the first and the second Λ-S dissociation limits, have been explored for the first time. The spin-orbit coupling effect is revealed to have introduced a significant impact on the pattern of these electronic states and interactions among them. Our predictions for molecular structures and spectroscopic constants of MgBi are compared with available data of other magnesium-group 18 family species. Regular tendencies of these parameters are clearly exhibited when the group 18 atom is replaced by another one in the group. Information associated with transition dipole moments, Franck-Condon factors, vibrational branching ratios and radiative lifetimes between the Ω states are obtained and their transitional properties are analyzed and discussed. The results and data determined in this work are expected to guide and assist laboratorial detections of MgBi and to extend our understanding for the magnesium-group 18 species.

17.
Chemistry ; 27(4): 1286-1291, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-32960463

RESUMEN

Effective capture of radioactive iodine is of paramount importance for the safe and long-term storage of fission products in the nuclear fuel cycle. Herein, a series of functionalized Th-UiO-66 MOFs was employed as a model to investigate the effects of substituents on iodine adsorption in both solution and vapor states. Sorption studies revealed that the electro-donating amino group exhibits the most positive role on increasing the removal rate of iodine from cyclohexane and the uptake capacity of iodine vapor. Particularly, the disubstituted Th-UiO-66-(NH2 )2 can effectively remove 91.9 % of iodine (300 mg L-1 ) from cyclohexane and capture 969 mg g-1 iodine vapor, significantly higher than 59.6 % and 334 mg g-1 of untagged Th-UiO-66, respectively. In addition, the substituent effect on the radiolytic stability of MOFs was for the first time investigated, leading to the unearthing of one of the most radioresistant MOFs Th-UiO-66-NH2 reported to date.

18.
Inorg Chem ; 59(23): 17659-17670, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33185435

RESUMEN

The mixed-ligand strategy is one of the important methods for preparing new materials and regulating the properties of materials. In this work, by introducing different auxiliary ligands (ALs), we have obtained a series of mixed-ligand uranyl complexes (1-6) from a flexible biphenyltetracarboxylic acid (H4bptc) with an adjustable orthogonal conformation and studied the influence of different organic base molecules on the coordination and assembly of H4bptc with a uranyl cation. It is found that the coordinated ALs, including 4,4'-bipyridine-1,1'-dioxide and 1,10-phenanthroline, partially occupy the coordination sites of the uranyl center and directly affect the molecular conformations and uranyl coordination of flexible bptc linkers. On the other hand, noncoordinated ALs such as protonated 4,4'-bipyridine ([H2(4,4'-bpy)]2+) or dimethylammonium, which work as counterions in the form of encapsulated guests or hydrogen-bonded templates, also have a nonnegligible impact on the conformation and coordination of bptc linkers. Most interestingly, the AL-mediated evolution of uranyl coordination by the bptc linker and coordination geometry of the uranyl center is clearly observed, which suggests the adaptability of flexible bptc linkers to take suitable molecular configurations and uranyl coordination modes so as to adapt to the external regulator agents and varying environment. The physicochemical characterization of these uranyl compounds, especially photoluminescence, is addressed and discussed, and the results reveal that compound 5 has the potential to serve as a multifunctional radiation detection material for UV light and X-ray radiation.

19.
Org Biomol Chem ; 18(19): 3767, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32377659

RESUMEN

Correction for 'Nickel-catalyzed cyanation of phenol derivatives activated by 2,4,6-trichloro-1,3,5-triazine' by Liang Wang, et al., Org. Biomol. Chem., 2018, 16, 4816-4820, DOI: 10.1039/C8OB01034J.

20.
ACS Appl Mater Interfaces ; 12(12): 14087-14094, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32109047

RESUMEN

Although metal-organic frameworks (MOFs) have been reported as important porous materials for the potential utility in metal ion separation, coordinating the functionality, structure, and component of MOFs remains a great challenge. Herein, a series of anionic rare earth MOFs (RE-MOFs) were synthesized via a solvothermal template reaction and for the first time explored for uranium(VI) capture from an acidic medium. The unusually high extraction capacity of UO22+ (e.g., 538 mg U per g of Y-MOF) was achieved through ion-exchange with the concomitant release of Me2NH2+, during which the uranium(VI) extraction in the series of isostructural RE-MOFs was found to be highly sensitive to the ionic radii of the metal nodes. That is, the uranium(VI) adsorption capacities continuously increased as the ionic radii decreased. In-depth mechanism insight was obtained from molecular dynamics simulations, suggesting that both the accessible pore volume of the MOFs and hydrogen-bonding interactions contribute to the strong periodic tendency of uranium(VI) extraction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...